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Question 1
Part (a)
This was generally well answered with most candidates opting to use the more obvious

1 . 1 .
formula A = 5 absinC , though too many went straight from A= 5 xxxxxsin60to the

3
given result, losing a mark as it was essential to show where 7 came from. A smaller number
of candidates chose to find the height of the triangle in terms of x using Pythagoras theorem, and
1 . .
then used A = EX base x height . Candidates should note the word ‘show’ very carefully and

make sure that every step towards a given result is clear and seen.

Part (b)

This was, as in past similar questions, not as well answered with many candidates not knowing
where to start. Those that had a grasp of connected rates of change and use of the chain rule
usually went on to score full marks. Some candidates confused themselves by introducing [/ for
the side of the triangle so they then had to contend with a fourth variable, which inevitably led
to a lack of success.

Question 2

Quite a few candidates answered parts of the question in the wrong places, and credit cannot be
given when work is not given in the correct part of the question, as it is not clear to the examiner
that the candidate knows what they are seeking to find. Most commonly, candidates were
differentiating the expression for s almost in automatic pilot throughout parts of the question
regardless of whether it was required or not.

Part (a)

Approximately half of the candidates realised that the height from which the stone was thrown
was when ¢ = 0. Candidates should be looking at the allocation of marks for a hint of the amount
of work involved in any particular section. In part (a), the answer was worth one mark so that is
an indication that the answer can be written down virtually without working.

Part (b)

Many candidates differentiated the given expression for s correctly, but then failed to write
down the initial velocity (from using ¢ = 0), thus losing the A mark. Because this problem had
constant acceleration it was perfectly possible to answer this question fully without calculus and
there were several attempts to do this using UVAST equations (which is beyond the
specification, but perfectly acceptable). However, unless a candidate left their solution for ¢
from putting s = 0 and finding the total time in their calculators as an exact answer, they ended
up with an inexact value for the maximum height which also lost the A mark.

Part(c)
This was again a single mark answer and some candidates did indeed derive the acceleration

. ds : : .
from their d_ as was intended, but many just wrote down 9.8 m/s* because they knew this was
t

the acceleration due to gravity. This was acceptable for the B mark in this part of the question



Part (d)

Those candidates who had interpreted the question correctly were able to answer this part within
three lines of working. There was some incorrect calculus with some candidates integrating and
some finding the second derivative of s. This part was also answered by a good number of

candidates using v> = u” + 2as . The solution is slightly more involved than using calculus, but
it is a valid method, though they had to carry forward their value for u here from part (b).

Question 3

There were many completely correct responses. A generally well answered question, though
once again many would be well advised to show every step in their methods clearly in ‘show
that’ questions.

Parts (a) and (b) were very well answered with very few incorrect vectors.

Part (c)
Most candidates opted to go the slightly longer way around as the vectors OS and BR were

easier to define that the vectors SC and RC . It was clear from the responses that either a
candidate could manipulate and understand vectors or they could not, in which case they
achieved no marks in this section. Otherwise, the number of fully correct responses was in the
large majority. Credit was given for the last mark for those candidates who referred to the
vectors as parallel, or as minimally acceptable just the word ‘shown’. A conclusion however
minimal was nonetheless required for the final mark in part (c).

Part (d)
Virtually every candidate who got as far as part (c) correctly also achieved both available marks
here. The method mark was allowed for follow through from parts (b) and (c).

Question 4

Approximately half of all candidates gained all 3 marks in this question. The majority of those
who did not, converted the given angle in radians into degrees, making the question much more
complicated. Part (a) was worth one mark, and even if candidates used the correct formula in
degrees with the correct angle in degrees (which was not exact — 103.132..°), they often failed to
achieve an exact answer. Credit was however, given for answers which rounded to 9.0.

Some candidates confused the formulae of the arc length and the area, and the most common

error in part (b) came from using the incorrect formula A = °@. In order to achieve the M mark
0
in this part candidates who opted to use degrees had to use the formula A = %ﬂrz with a

correct r.

Some candidates were uncomfortable using radians, despite that fact that this question could
easily have been answered by writing down the length of arc and area of the sector almost
without working.



Question 5

This was the lowest number of full marks achieved among all 10 questions; very few correct
responses were seen, although many managed to draw the three lines accurately and identify the
region given by the inequalities.

Part (a)
A few candidates were unable to draw the 3 straight lines, a major problem being reliance on the
sole strategy of seeking intersections with the axes, which for only y =—x—1 gave both points;

the other two lines giving only one intersection on either the y axis or the x axis. Given that most
candidates are using graphic calculators, it was surprising how many failed to draw the correct
lines.

Part (b)

When it came to finding values of P, only a minority realised that they needed to consider the
vertices, and of those, very few knew that for a full solution they needed to test all three. Of the
minority of candidates who had interpreted the question correctly, most achieved either the
greatest or least, but only a very few found both, and even less found all three values. However,
full marks were given to those who correctly identified the maximum and the minimum values
of P only.

Question 6
This question was very successful in discriminating the middle to high ability candidates.

Part(a)
Most candidates were able to manipulate the logarithms successfully mainly by using logs,
usually in the base 3.

Part (b)
Those students who managed to convert 9° =(3%)" =(3”)*also found the correct 3TQ and

were able to proceed to the correct final solution, finding both roots in virtually every case.

Part (c¢)
This part of the paper discriminated between candidates very well. The first method mark was
available for converting 6" into3* x2". Only a few candidates achieved this, but of those the

small minority who were able to factorise the expression completely found a completely correct
final solution.

Question 7

A good number of candidates gave completely correct answers to both parts of the question,
with abundant evidence of proficiency in integration and algebraic manipulation.

Part (a)

The focus of this part of the question was knowledge of calculating volumes of revolution by
using calculus. Therefore, only a limited number of marks were available in part (a) for just for
demonstrating integration. It was necessary for candidates to use a correct formula and to
interpret the problem correctly. A few candidates confused parts (a) and (b) and subtracted their
volume from that of a cylinder or cone. On the whole, this was answered well.



Part (b)

The focus in part (b) was the area between a curve and a line. As before, this was a well
answered question, but there were candidates, possessing state of the art calculators who just
wrote correct answers down (for both parts of the question) without showing any working.

Question 8

Part (a)

There were many completely correct responses in this part of the question. Most candidates
were able to apply the given identity for tan@and also remember and apply the identity

sin@+cos*@ =1 . Full credit was given for both applied correctly, although it is worth
reminding candidates that a full method must in evidence for a ‘show’ question.

Part (b)

This was a little more demanding so there was slightly less numbers of candidates successful
here. Candidates starting from the LHS or RHS were in equal measure, either method being
completely acceptable. There were some excursions into trigonometry using needless identities

such as cos20 =cos>@—sin’ 6. In general, those candidates who realised that the result in
part (a) should have been used in part (b), were successful.

Part (¢)

This was the least well answered part of the question and it discriminated well between middle
and high ability candidates. There was an obvious link in this part from the two earlier parts and
unsuccessful candidates employed some very inventive trigonometry (to no avail) when they
should have looked at the given results for the earlier parts, particularly part (b).

Those candidates who successfully formed the 3TQ then went on in nearly every case to give
two correct angles in the given range.

Question 9

The remainder and factor theorems were clearly very well known to the vast majority of
candidates, many scoring full or nearly full marks.

Part (a)

Almost every candidate scored full marks in this section. The only occasional errors were in
sign slip ups when solving the simultaneous equations.

Part (b)

Again, virtually every candidate was able to divide polynomials correctly and accurately,
achieving the correct quotient without a remainder.

The only regular error that was seen was the failure to factorise f(x) correctly by missing out the
factor of 2, either separately or embedded in one of the algebraic factors. This did not affect the
solution of f(x) = 0 and in the final part of the question virtually every candidate achieved all
three roots correctly.

Question 10

This question was probably more accessible, and more successfully answered, than most recent
long questions in coordinate geometry.

Parts (a) (b) and (c) were answered easily and accurately by the majority of candidates who had
reached this far in the paper.



Part (d)

This was sometimes omitted completely and some candidates clearly lacked the understanding
that a right angle triangle sits in a semi-circle, mainly because they had not drawn a diagram.
Here, as in later parts of the question, a simple diagram would have made it obvious which
length was required, as unsuccessful candidates were looking for AB or BC again.

Parts (e) and (f)

Many candidates attempted to remember and use the formula for the proportional division of a
line, where the use of a sketch and simple counting, or the use of vectors would have found the
coordinates of P and Q quicker and easier, though finding point P was far more successful than
point Q. A simple sketch would have made it obvious that the y coordinate of Q could not be
anything other than 3.

Part (g)

The most usual way for candidates to verify that point Q lay on the line BC was by finding the
equation of the line segment BC and testing the coordinates they found for point Q. Many
candidates scored two marks here for the line alone. However, point Q was only found correctly
by a few candidates, so the final mark in this question was lost.

Other methods included finding the midpoint of BC, comparing the gradients of BQ and QC or
indeed verifying that the lengths of line segments BQ and QC were equal.

Centres should encourage their candidates to draw a clear labelled diagram, which is essential in
any question on coordinate geometry.
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